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Species distribution models (SDMs) have been widely used to project terrestrial spe-
cies’ responses to climate change and are increasingly being used for similar objectives 
in the marine realm. These projections are critically needed to develop strategies for 
resource management and the conservation of marine ecosystems. SDMs are a pow-
erful and necessary tool; however, they are subject to many sources of uncertainty, 
both quantifiable and unquantifiable. To ensure that SDM projections are informative 
for management and conservation decisions, sources of uncertainty must be consid-
ered and properly addressed. Here we provide ten overarching guidelines that will 
aid researchers to identify, minimize, and account for uncertainty through the entire 
model development process, from the formation of a study question to the presenta-
tion of results. These guidelines focus on correlative models and were developed at an 
international workshop attended by over 50 researchers and practitioners. Although 
our guidelines are broadly applicable across biological realms, we provide particular 
focus to the challenges and uncertainties associated with projecting the impacts of 
climate change on marine species and ecosystems.
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Introduction

Managing natural ecosystems in this era of global change 
requires accounting for the ongoing and anticipated impacts 
of climate change. In general, species are tracking climates 
poleward (sensu Iverson  et  al. 2019, IPCC 2022), but the 
rate, extent, and direction of movement for any individual 
species is highly uncertain. While the primary application of 
species’ distribution models (SDMs) has been to predict the 
contemporary distribution of a species based on the spatial 
variation of environmental covariates, they are becoming a 
valuable tool to project the potential future distribution of 
those same species. 

In the marine environment, increasing temperatures and 
other effects of climate change on ecosystems are already 
impacting species, with changes in physiology and range 
shifts being among the most recognized (Pörtner and Peck 
2010, Pecl Gretta  et  al. 2017, Fredston-Hermann  et  al. 
2020, Weiskopf  et  al. 2020). Species will either shift their 
distribution and attempt to track changing environ-
ments, acclimate, or evolve in response to changing condi-
tions, or become extirpated or possibly extinct (Holt 1990, 
Wiens et al. 2009, English et al. 2021, Tittensor et al. 2021). 
The three-dimensional marine realm presents some unique 
challenges to adaptation. For example, the stratification of 
the water column and the strong correlation between depth 
and dissolved oxygen can, depending on a particular species’ 
physiological tolerances, limit its ability to shift into deeper 
depths as conditions warm (Wiens 2016, English et al. 2021, 
Thompson  et  al. 2023). Marine species are better able to 
track climate shifts poleward than terrestrial species due to 
the lack of physical barriers to movement that exist in the ter-
restrial realm, such as mountains, river systems, and human 
development (Lenoir et al. 2020). However, human extrac-
tive activities (i.e. fishing) are also shifting poleward, making 
it difficult to disentangle the different pressures (Pinsky and 
Fogarty 2012). Despite these challenges, distribution projec-
tions are a valuable tool to understand the scope of potential 
change in future climates (Brodie et al. 2022). While there 
are many sources of uncertainty inherent to SDM predictions 
(Araújo et al. 2019, Zurell et al. 2020), the additional uncer-
tainty associated with projections of species’ distributions 
into the future is the focus of this paper. Decisions that are 
made during the model building process will have a cascad-
ing effect on the uncertainty of projections. Projecting SDMs 
into new time periods, with potentially new climate condi-
tions, introduces three additional sources of uncertainty: 
1) climate model uncertainty; 2) emissions scenario uncer-
tainty; and 3) eco-evolutionary uncertainty (Fig. 1). These 
additional sources of uncertainty stem from the underlying 
biological and environmental data, the climate projections, 
as well as the complexity and context dependency of natu-
ral ecological systems (Urban 2019). This uncertainty can 
hamper confidence in model results or interpretation and can 
include both parametric (uncertainty in model parameters or 
quantities of interest) and structural uncertainty (model mis-
specification) (Elith et al. 2002). 

Projections can provide critical information to fisheries 
and conservation managers, such as the identification of areas 
where species are likely to persist, increase, or decline under 
climate change (Young and Carr 2015, Sofaer et al. 2018). 
However, if uncertainty is not accounted for and addressed, 
there is a risk that species’ projections will, at best, fail to be 
informative for making management decisions and, at worst, 
lead to poor management decisions by presenting overconfi-
dent or inaccurate results (Budescu et al. 2012, Brodie et al. 
2022). In this paper, the word uncertainty is used in both 
the colloquial sense, to describe something that is unknown, 
and in the statistical sense, to describe the range of probable 
outcomes. The latter is quantifiable, while the former is not. 
We argue that to produce rigorous SDM projections that 
meaningfully inform management decisions, uncertainty 
must be identified, minimized when possible, and commu-
nicated to end users. The themes of this paper were discussed 
by over 50 researchers and practitioners at an international 
workshop hosted by Fisheries and Oceans Canada in March 
2021. Here, we propose a set of ten guidelines for address-
ing uncertainties when projecting marine species’ distribu-
tions under climate change, including identifying the sources 
of uncertainty, their impacts on the analytical process and 
results, approaches to manage these uncertainties, and how 
to appropriately communicate them to end users.

Guidelines for using SDMs to project marine species

We propose guidelines that support a logical workflow start-
ing from articulating the goals of the study, through the 
modeling process, both model building and projection, and 
finally communicating results to other scientists, resource 
managers, and policy makers. Guidelines 1 and 2 provide 
advice for the development of sound research. Guidelines 
3–6 identify uncertainties associated with model building, 
including the level of uncertainty acceptable depending on 
the objective, the uncertainty from input data, relevance of 
predictors, and the selection of the model. Guidelines 7–10 
are specific to projections in new climate conditions and, as 
described above, deal with climate model uncertainty, emis-
sions scenario uncertainty, and eco-evolutionary uncertainty. 
For each guideline we have identified key questions for ana-
lysts to consider and outline best practices with a focus on 
how to identify and minimize uncertainty, when possible, 
and how to transparently communicate the uncertainty that 
cannot be avoided (Table 1). 

1. Frame the research question
Clearly stating the research questions (i.e. the problem, the 
objectives, and the hypotheses) is essential to ensure that 
objectives are considered throughout the analysis and sup-
port transparent and reproducible SDM results (Araújo et al. 
2019, Zurell et al. 2020). A research outline (Table 2) can 
communicate the intention of the research, explicitly state 
the scope of the study, help identify any assumptions that 
may impact the outcome of the study, and support qualita-
tive identification of the tolerance for uncertainty. Different 
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Figure 1. The uncertainty of a species’ projected distribution can be broken down into several components of the modeling process, where 
the uncertainty associated with each component has a cascading effect on subsequent steps. The SDM uncertainty (A; i.e. the uncertainty 
associated with parameters in the SDM that define the species-environment relationships), and both the emission scenario uncertainty (B; 
i.e. the difference between projections based on different mitigation scenarios) and climate model uncertainty (C; i.e. the difference between 
projections based on different climate models – could represent a contrast across multiple global models or multiple regional models) can 
be mapped separately to illustrate areas of higher or lower confidence to end users. For simplicity, this figure does not include quantifying 
uncertainty due to internal variability. An ensemble projection (D) is a useful way to present the average projected values across multiple 
climate models or SDMs, but we recommend that it be presented alongside estimates of these other sources of uncertainty. Uncertainty due 
to eco-evolutionary processes is not generally quantifiable and is in addition to these other sources of uncertainty. Mapping projected range 
changes (E) can help to differentiate between areas of lower uncertainty from eco-evolutionary processes (i.e. areas projected to remain suit-
able) with areas of potentially higher uncertainty (i.e. areas where species are projected to be lost or gained). This figure partitions uncer-
tainty into its individual components rather than propagating uncertainty, which is another good option. This example projection is based 
on data and outputs from Thompson et al. (2023).
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research objectives will have different assumptions. For 
example, quantified changes in abundance and distribu-
tion are necessary for the development of harvest strate-
gies for commercially important species and assume that 

sampled biomass data are representative of the population 
(Allyn et al. 2020). Marine spatial planning studies to iden-
tify overlap between cetacean distribution and oil and gas 
exploration activities, however, may only require qualitative 

Table 1. Summary of the different sources of uncertainty encountered when projecting species’ distribution models (SDMs) into future cli-
mates and some recommended approaches to minimize or account for the uncertainty.

Guideline Source(s) of errors and uncertainty Recommended approaches

1. Frame the research 
question

Ambiguous research goals Clearly state the problem, objectives, hypotheses, and 
assumptions that may impact the study

2. Build a collaborative 
community for SDMs in 
future climates

Irreproducible research or 
undocumented analytical decisions

Make data, modeling methodology (including purpose-built 
coding scripts) publicly available

3. Ensure the scope of study 
is relevant, both in space 
and time

Extent of study inputs does not 
accurately represent species’ 
distribution

Use the widest possible spatial and temporal extent available 
for the species that best addresses the research question

Scale mismatch Up or downscale environmental covariates to match the most 
relevant temporal and spatial scale for the species, either 
instantaneous or long-term averages. Model comparison 
can be used to support decisions

4. Identify appropriate 
species’ data

Biases in available data Incorporate data from additional sources, including species’ 
experts and Indigenous Knowledge; incorporate knowledge 
of a species’ ecology and physical tolerances to improve 
model outputs

5. Determine relevant 
climatic and non-climatic 
environmental variables

Environmental variables may be poor 
predictors of current species’ 
distribution

Examine species’ response to historical climate variability and 
from physiological experiments; see random effects in 
Guideline 8

Assumption of poor model performance 
when extrapolating into new 
conditions

Use biological knowledge to select the most relevant 
environmental variables; consider if the assumption that 
collinearity between environmental variables will remain 
the same or shift under future conditions

6. Select the SDM model Incorrect variable selection and 
parameterization

Systematic evaluation of a set of candidate models, their 
model fit, and their predictive power using spatially or 
temporally held-out data to ensure model is not overfit

7. Identify climate model 
uncertainty

Internal climate model variability Internal variability is quantified in Earth System Models by 
running the same global climate models (GCMs) and 
scenario multiple times with slightly different initial 
conditions; temporal averaging of climate projections over 
multiple decades can help to eliminate the effect of internal 
variability

Model uncertainty – global scale Quantify variability using multiple independent models and 
the same climate scenario

Model uncertainty – regional scale Dynamical or statistical downscaling, regional climate models
Scenario uncertainty Compare different scenarios using the same models

8. Identify SDM uncertainty Natural variation Acknowledge the influence of natural variation in the physical 
environment on model calibration; cross-validation

States of nature Compare models using different structural assumptions; 
estimation of parameter uncertainty through bootstrapping, 
maximum likelihood, Bayesian methods, etc.; spatial and 
spatial-temporal random effects; review model outputs with 
species’ experts

Extreme events Acknowledge the potential for unpredictable events from both 
climate model uncertainty and eco-evolutionary uncertainty

9. Identify eco-evolutionary 
uncertainty

Assumption that all individuals have 
the same environmental response

Assess if environmental response curves vary using spatial-
block cross-validation; model sub-populations separately if 
environmental responses differ

Current species-environment 
relationship does not reflect future 
species-environmental relationship

Acknowledge that actual species’ distributions under future 
climates will inevitably differ from projected potential 
habitat (i.e. SDM projections are hypotheses); highlight 
higher certainty in areas where conditions are projected to 
remain suitable

10. Communication of 
results and uncertainties

Misinterpretation or dismissal of 
important findings

Involve end users in the development of the research 
question; illustrate areas of uncertainty with maps; identify 
the timescale of outputs as well as both certainties and 
uncertainties in model outputs
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changes in occupancy over time for decision making pur-
poses (Sahri et al. 2021). Laying out the study plan provides 
a clear communication tool for all parties involved in the 
research and its outcomes. 

2. Build a collaborative community for SDMs in future 
climates
Teams with multidisciplinary expertise (e.g. biology, ocean-
ography, climate science, statistics, data management, 
computer science) are essential to properly develop SDM 
projections and address the associated uncertainty. Each step 
of the SDM analysis process (goal setting, data selection, 
model building, model evaluation and validation, interpreta-
tion of results, and communication of results) may require a 
unique set of experts to guide decisions. For example, data 
selection for a single-species’ SDM projection would not only 
involve species’ experts with a strong statistical background 
but would also require collaboration with oceanographers 
and climatologists. Modeling steps in the analysis could 
involve additional support from statisticians and computer 
scientists that include both biological and climate modeler 
expertise. Connections among communities of practice 
working on common objectives and building complemen-
tary tools can increase efficiency, reduce duplication of effort, 
and boost outcomes of research findings (Gomez et al. 2021). 
Collaborative efforts can both facilitate, and be facilitated by, 
improved accessibility of all predictors, species’ data, and 
model results. Bio-ORACLE is an example initiative aggre-
gating geophysical, biotic, and climate layers with common 
spatial resolution (Tyberghein et al. 2012, Assis et al. 2018). 
The Fisheries and Marine Ecosystem Model Intercomparison 
Project (Fish-MIP ver. 1.0) is an example of a cross-sectoral 
network that brings together the marine ecosystem modeling 
community to produce consistent ensemble medium- and 
long-term projections of marine ecosystems using com-
mon scenarios and standardized outputs (Frieler et al. 2017, 
Tittensor et al. 2018). Both of these initiatives highlight the 

importance of making all input data, modeling methodology 
(including code), and decisions made during the analysis pro-
cess publicly available to facilitate reproducible research and 
greater collaboration (Nephin et al. 2020, Zurell et al. 2020, 
Nature Editorials 2022). 

3. Ensure the scope of study is relevant, both in space and in 
time
The choice of extent and resolution in both space and time 
can impact the accuracy of SDM projections and affect 
their utility to support management decisions (Record et al. 
2018). Projecting distributions into future climates assumes 
that species’ distributions across spatial climate gradients 
will match species’ responses to temporal changes in climate. 
While this assumption is based on a species’ distribution 
being at equilibrium with climate and is, at times, incorrect, 
it is important to consider how analysis may be limited by 
both the distribution of sampling within the study area and 
the environmental range that is being characterized (Pearson 
and Dawson 2003, Araújo and Peterson 2012).

Applications of SDMs to marine species have often 
involved fitting models with observations from a subset of the 
species’ range within geopolitical boundaries (Thorson et al. 
2015, Laman et al. 2017). While this spatial extent may be 
appropriate for questions related to regional commercial 
fish stock assessments, they are ill-suited to climate change 
applications. Using only a subset of data in space or time 
will usually lead to truncated species-environment relation-
ships and introduce uncertainty in the fitted SDM param-
eters (Guillera-Arroita et al. 2015). These models are likely 
to have reduced transferability when they are extrapolating 
beyond the range of observed conditions where they are not 
calibrated or validated, and therefore generate poor distribu-
tion projections (Thuiller et al. 2004, Muhling et al. 2020, 
Charney  et  al. 2021). To characterize the species-environ-
ment relationship, species’ observations should be sourced 
from the widest spatial and temporal extent available that 

Table 2. Examples of different research outlines to facilitate the next steps of investigation and guidelines presented in this paper.

Research outline Example 1 Example 2

Problem Climate is known to elicit movement responses by 
managed commercial fish species. The lack of 
knowledge regarding how they will move creates 
uncertainty in harvest management advice and the 
associated risk to achieving management objectives in 
the future

Climate change will impact the availability or 
distribution of habitats for marine species, such as 
cetaceans. Identification of areas that are likely to 
support high biodiversity is necessary for 
biodiversity and habitat protection initiatives

Objective Projecting the distribution of a commercial fish species 
in future climates to support stock assessment and 
fisheries management

Identifying areas along the coast that are projected 
to support high biodiversity for marine protected 
area (MPA) designation

Question(s) How might distributions of important managed species 
change within a management zone?

Are there biodiversity hotspots in the study area? 
Are there habitats for the species or species’ 
assemblages under study that may remain 
generally stable over time?

Uncertainties (one 
example)

Cannot assess all life stages of a commercial fish species 
(e.g. juvenile) due to gaps in life history knowledge 
and/or limited juvenile species’ observations

Interactions between species may prevent some 
species from predictably tracking their climate 
niche

How will the above 
uncertainty impact 
the analysis?

Incomplete environmental response curves due to lack 
of juvenile observations; unrealistic confidence 
around projections

Projected and realized changes in biodiversity may 
differ
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best addresses the research question (Thuiller  et  al. 2004, 
Barbet-Massin et al. 2010). 

The spatial resolution of appropriate environmental 
covariates should also be at a biologically relevant scale for 
the taxa being modeled (Austin and Van Niel 2011). For 
example, the relevant scale for the relationship between 
bathymetry and a highly migratory pelagic fish species (e.g. 
tuna) is likely coarser than that for an intertidal invertebrate 
(e.g. oyster). One challenge with modeling at an appropriate 
scale is that the available spatial resolution of environmen-
tal covariates may not match the resolution of the species’ 
observations. In these cases, environmental covariates should 
be up- or down-scaled (Hijmans  et  al. 2005, Araújo  et  al. 
2019). Unfortunately, future climatic variables are necessar-
ily coarse since they are typically modeled at a global scale 
and projections are not yet available for all relevant climatic 
variables. For example, Bio-ORACLE currently only has 
a quarter of the number of benthic variables available for 
projections as it does for current distributions (Assis  et  al. 
2018). While downscaling methods can be applied to match 
the desired scale in an attempt to capture the variability at 
the scale relevant to the organism, this process may intro-
duce additional uncertainty. Modeling at coarser spatial 
resolutions than is biologically appropriate can increase 
uncertainty in projections by over- or under-predicting 
habitat (Seo  et  al. 2008, Randin  et  al. 2009, Willis and 
Bhagwat 2009, Gottschalk et al. 2011, Franklin et al. 2013). 
Importantly, the spatial scale at which species’ projections 
are generated should be considered when making manage-
ment decisions. Coarser resolution models (e.g. 100 km) 
that do not resolve local topographic features, for example, 
may not be well suited to support local management deci-
sions (e.g. within a 10 km squared coastal protected area) 
(Whittaker et al. 2005). Although these coarse models may 
currently represent the best available knowledge, they should 
be considered to have a high level of uncertainty due to gaps 
in finer scale distribution. 

The temporal resolution of environmental covariates is 
another important consideration. Ideally, the temporal reso-
lution of the environmental covariates should match that of 
the species’ data used to build the species-environment rela-
tionship (Batalden et al. 2007, Araújo et al. 2019). However, 
SDM projections also involve a mismatch between current and 
future species-environment relationships as the projections 
derived from climatologies (i.e. long-term means) and char-
acterize response to the long-term average (Heikkinen et al. 
2006, Bateman et al. 2012). These climatologies ignore inter-
annual variability and exclude extreme weather events, and 
thus will not be well calibrated to the range of conditions expe-
rienced by the species over time, leading to under- or over-
estimations of species’ distribution (Bateman  et  al. 2012). 
When possible, comparing inter-annual and long-term cli-
matic variability on a species’ current predicted distributions 
can inform how effectively long-term averages can describe a 
species-environment relationship (Gardner et al. 2021, Perez-
Navarro et al. 2021). Understanding this limitation will allow 

researchers to qualify the amount of uncertainty in model 
projections (Whittaker  et  al. 2005, Heikkinen  et  al. 2006, 
Randin et al. 2006). 

4. Identify appropriate species’ data
While consistent and standardized datasets of presence/
absence or abundance are ideal for minimizing uncertainty 
when building SDMs, they may not be readily available or 
logistically feasible. Existing data may also be biased to a cer-
tain time of year due to logistical constraints or data collec-
tion priorities. Alternative information sources may confirm 
or expand species’ observation data. For example, environ-
mental DNA (eDNA) is becoming increasingly viable, par-
ticularly for bony fishes (Muha et al. 2017). Advancements 
in imagery analysis also allow for biological surveys of 
coastal habitats with remotely piloted aircraft (e.g. drones) 
(McKee et al. 2021, Monteiro et al. 2021). Citizen science 
platforms and global databases can provide observational 
data, trading sample size for potential inaccuracy and spa-
tial bias (Beck et al. 2014, Johnston et al. 2020). Expert and 
Indigenous Knowledge can also be used in conjunction with 
survey data to capture the extent of a species’ distribution 
(Merow et al. 2017, Skroblin et al. 2021). 

Combining data sources can fill in gaps in any individ-
ual dataset. Integrated SDMs incorporate complex statisti-
cal structures to combine datasets from different sources 
can increase the power of a model while still accounting for 
biases and variances of the individual datasets (Isaac  et  al. 
2020, Rufener et al. 2021). For example, this approach has 
been used to define the spatio-temporal distribution of killer 
whales (Watson  et  al. 2019). However, analysts must con-
sider the biases that may result from differences across data 
sources. For instance, catchability often varies by fishing gear 
type, and data collected from fisheries may be non-random 
and preferentially sampled (Fletcher et al. 2019). 

Information on a species’ ecology can be used within 
SDMs to reduce uncertainty in forecasting. For instance, 
dispersal barriers, ontogenetic shifts, and biotic influences 
on aggregations (e.g. spawning) affect model accuracy and 
performance (Robinson  et  al. 2011). Dispersal barriers 
are less common in marine systems (Carr et al. 2003), but 
may be important to incorporate as post hoc constraints to 
SDM projections for species with lower dispersal capacities 
(Robinson et al. 2011). Uncertainty may be reduced by split-
ting observation data between adults and juveniles if a species 
occupies habitats with different environmental conditions 
across its life stages (Petitgas  et  al. 2013). Experimentally 
derived responses can be applied to compare the fundamen-
tal niche of a species relative to the realized niche modeled by 
SDMs (Martínez et al. 2015, Franco et al. 2018) or incor-
porated as priors in Bayesian SDMs (Gamliel  et  al. 2020). 
Though physiological limits are unknown for many marine 
species, this information is particularly valuable for SDM 
projections, as future distributions will be underestimated 
when observed locations are constrained by non-climatic fac-
tors (Araújo and Peterson 2012). 
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5. Determine relevant climatic and non-climatic 
environmental variables
There are two key considerations when identifying relevant 
environmental variables: 1) their ability to describe species’ 
responses to current environmental conditions; and 2) the 
uncertainties that exist in how those responses may change 
in future climates (Table 1, guideline 9). Many studies have 
shown temperature-related variables to be among the most 
powerful predictors of species’ distributions (Bradie and 
Leung 2017, Bosch  et  al. 2018). A variety of mechanisms 
have been identified through experiments, models, and 
observations of extreme thermal events whereby temperature 
affects biological processes such as development, dispersal, 
growth, and species’ interactions (O’Connor  et  al. 2007, 
Kordas et  al. 2011, Sunday et  al. 2012, Boyd et al. 2013). 
Understanding these mechanisms can help to determine the 
most suitable temporal values (e.g. average daily maximum 
temperature, warmest month, or cumulative values such as 
growing degree days). However, data availability and realism 
must also be considered when selecting climatic variables. 
If biological knowledge suggests that extreme temperature 
events contribute to limiting the local-scale distribution of 
a species, it is necessary to determine whether the spatial 
and temporal resolution of the data (both from observations 
and climate models) are sufficient to resolve such events. 
Global climate models (GCMs) are most suited to project-
ing changes in the statistics of a climate phenomenon (e.g. 
mean temperature or the frequency of an event), rather than 
the magnitude of an extreme event, and the confidence in 
those extreme event projections can depend on the variable 
and region (Seneviratne et al. 2012).

Static, non-climatic variables are essential to reduce uncer-
tainty when projecting species’ distributions (Willis and 
Bhagwat 2009). Ignoring non-climatic variables that limit 
species’ distributions increases the risk of overfitting the cli-
matic variables, and over- or under-estimating changes in a 
species’ distribution and extinction risk under climate change 
(Beaumont et al. 2005, Virkkala et al. 2010, Hof et al. 2012, 
Zangiabadi et al. 2021). In the marine realm, excluding phys-
ical habitat variables such as bathymetry can be problematic 
as they are often correlated with climatic variables that are 
difficult to measure or model, such as food availability, but 
integral to predicting habitat (Luoto and Heikkinen 2008). 
Unlike climatic variables, static variables can either be used as 
predictors in a model or explicitly excluded depending on the 
question and research objective. However, we recommend 
determining if environmental covariates should be included 
or excluded by applying causal inference methods to identify 
useful controls versus confounds (Pearl et al. 2016). 

Highly complex and overfit models tend to perform 
well within the environmental space the model was trained 
with, but may perform poorly when projecting into future 
conditions (Moreno-Amat et al. 2015, Bell and Schlaepfer 
2016). To limit model complexity, biological knowledge 
should be relied on to select the relevant environmental 
variables (Austin and Van Niel 2011). Preference should 
be to include the most proximate variables, those that have 

a direct physiological effect on the species being modeled, 
over more distal or indirect variables that are often used 
as proxies when proximal variables are missing (Anderson 
2013, Gardner  et  al. 2019). Some commonly used static 
variables (e.g. depth and distance from shore; Bosch et al. 
2018, Johnson et al. 2019) are considered proxies for other 
variables, such as pressure and exposure. When proxy vari-
ables are needed to represent important processes, practitio-
ners should note that an assumption of stationarity between 
the proxy variable and the more direct variable it aims to 
represent is implicit. 

Careful consideration of the causal link between each envi-
ronmental variable and the focal species can simplify com-
plex models and ensure model transferability (Barbet-Massin 
and Jetz 2014, Piironen and Vehtari 2017, Zangiabadi et al. 
2021). In addition, collinearity between variables can make 
their independent influence on a species’ range hard to distin-
guish (Bosch et al. 2018). This can be particularly problem-
atic for temperature and depth in marine systems; although 
they are often highly correlated at regional scales, tempera-
ture is projected to warm while depth remains constant 
(Thompson et al. 2022). Projections require that SDMs have 
accurately estimated how these two variables shape species’ 
ranges. A solution is to include species’ data from across a 
broader spatial extent where latitudinal temperature gradi-
ents can break down the collinearity between temperature 
and depth (Thompson et al. 2023).

6. Select the SDM model
SDM models range from parametric, to semiparametric 
(Shelton  et  al. 2014), to various forms of non-paramet-
ric approaches including MaxEnt (Phillips  et  al. 2006) 
and machine- or deep-learning models (Elith  et  al. 2008, 
Christin  et  al. 2019). Furthermore, models of species’ 
distribution can be purely data driven (e.g. correlative, 
Jarnevich et al. 2015) or built on assumed mechanisms and 
calibrated to data (Kearney and Porter 2009, Essington et al. 
2022). Correlative models may perform well on existing 
data but not extrapolate well if those correlations break 
down (Davis et al. 1998). Mechanistic models are grounded 
in physiological and biological principles, and may outper-
form correlative models in future conditions, but are often 
challenging to construct (Kearney and Porter 2009, Urban 
2019). Hybrid models incorporate known mechanisms in 
addition to phenomenological correlations, and have the 
potential to borrow advantages from both kinds of models 
(Kearney and Porter 2009). Creating ensembles by com-
bining the outputs from several individual models using 
different algorithms can improve predictive ability (Araújo 
and New 2007, Hao  et  al. 2020) and can be as simple as 
unweighted or weighted averages (Araújo and New 2007) or 
as complex as super-ensembles tuned to simulated or trusted 
data (Anderson et al. 2017). However, an ensemble is only 
as good as the individual models used to build it, therefore 
some effort is required to choose a high-quality candidate set; 
using models with different covariates or structure may help 
identify misspecification of any single model. Practitioners 
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seeking detailed guidance regarding different models should 
refer to Sofaer  et  al. (2019) for model development guide-
lines or Merow et al. (2014) for guidance on determining the 
appropriate model complexity. 

Model choice can influence uncertainty and should there-
fore be guided by the objectives of the analysis, the model fit, 
and model evaluation. For this reason, it is critical to start 
with a set of candidate models that can support the objectives 
of the analysis. These candidate models may include differ-
ent variables or differing parameterization of these variables. 
Second, it is necessary to evaluate candidate models for any 
problems in the fit itself (e.g. failure of the fitting algorithm to 
converge, non-sensible response curves) as well as violations 
of their assumptions (e.g. residual analysis, Rufener  et  al. 
2021; posterior predictive checks, Gelman  et  al. 1996). 
Several approaches are available to compare among candidate 
models meeting the above criteria. Threshold-independent 
statistics (e.g. receiver operator curve plots) can be used to 
assess overall model performance and the models’ discrimi-
natory ability across species and locations; while threshold-
dependent statistics (e.g. sensitivity, specificity, true skill 
statistic) can support accuracy assessment (Freeman and 
Moisen 2008, Liu et al. 2011). A more parsimonious model 
should in theory make better predictions (Aho et al. 2014). 
However, models that have good predictive power may not 
provide good projections (Veloz  et  al. 2012). Thus, model 
selection should be guided by ecological principles rather 
than selecting a model solely based on predictive power for 
contemporary distributions.

7. Identify climate model uncertainty
GCMs use numerical methods to solve systems of equations 
on a three-dimensional grid. These process-based models 
include coupled atmosphere, ocean, and land models, repre-
senting the fundamental components of the climate system 
(Flato 2011). A fully coupled global system is the only way 
to model the global climate system because of the complex 
interactions between each component. When coupled to 
models of biogeochemical cycling, they are known as Earth 
system models (ESMs) and are the primary scientific tools 
for estimating future climate states. ESMs from major cli-
mate modeling centres participate in coordinated experi-
ments, including the coupled model intercomparison project 
(CMIP), which has evolved through six discrete phases of 
activity over the past 30 years. The future trajectory of human 
activity and the associated greenhouse gas emissions are 
unknown, so future socio-economically based emissions sce-
narios are developed to illustrate the range of possible path-
ways. Climate models driven by these emissions scenarios 
produce projections of the future climate state. Each phase of 
CMIP contains new scenarios and updated models, and con-
cludes with the release of open data for downstream climate 
change studies (Eyring et al. 2016). 

Global climate projections have three sources of uncer-
tainty: 1) internal variability; 2) model uncertainty; and 3) 
scenario uncertainty (Hawkins and Sutton 2009). Internal 
variability arises from fluctuations in climate (such as El 
Niño), and within a single year this fluctuation can be larger 

than the climate signal itself. The precise evolution of internal 
variability in future decades cannot be predicted. However, 
the range of possible outcomes resulting from internal vari-
ability can be quantified by the spread across an ensemble of 
realizations from the same model and scenario. Each realiza-
tion starts from different initial conditions, and while they 
will differ in their variability, they will each experience the 
same overall climate change.

Climate model uncertainty results from an imperfect 
understanding of the climate system, and from assumptions 
and compromises made in representing this understanding 
in software-based numerical models. For example, the global 
scale and process complexity in ESMs and limited supercom-
puting capacity constrains the feasible resolution to about 
100 km. Processes that are not resolved at this scale (e.g. 
mesoscale ocean eddies) are approximately represented by 
parameterizations that are imperfect and often differ between 
models. Climate model uncertainty can be quantified by the 
spread obtained when multiple independent climate models 
are run using the same climate scenario. Summary reports 
such as the IPCC Assessments normally report on the multi-
model mean result (IPCC 2021), which is generally more 
accurate than the projections from any one model. 

Regional SDMs often require information at finer spatial 
scales than ESMs can resolve, so the ESM outputs must be 
downscaled to a finer spatial resolution. Regional downscal-
ing techniques are briefly described here and for a more com-
plete description of the commonly used methods and their 
use in ecology, the reader is referred to Harris et al. (2014) 
and Giorgi (2019). Dynamical downscaling uses a nested 
modeling approach in which regional models are forced at 
their boundaries by ESMs to generate finer resolution pro-
jections (Peña  et  al. 2019, Holdsworth  et  al. 2021). These 
models directly solve the equations of motion at regional 
scales and are particularly effective in regions where topo-
graphic effects on wind, temperature, and precipitation are 
important. Regional model uncertainty can be quantified 
by the spread obtained when an ensemble of independent 
regional models is run using the same driving ESMs and cli-
mate scenario (Fig. 1C). Statistical downscaling can be used 
to downscale ensembles of climate models. They rely on the 
assumption that regional climates are driven by large-scale 
influences and often require a target fine-resolution simula-
tion to train on. Both downscaling techniques inherit all the 
uncertainties from their parent ESMs and also introduce their 
own sources of uncertainty (Giorgi and Gutowski 2015). To 
minimize model uncertainty, bias correction methods can be 
applied prior to using global or regionally downscaled cli-
mate variables in SDMs; though, depending on the research 
question, this may add additional uncertainty to the analysis 
process (Maraun 2016, Xu et al. 2021). 

Finally, scenario uncertainty arises because the future of 
human behavior, and the resulting emissions and land use 
changes, are unknown. Scenario uncertainty is quantified 
by comparing different scenarios run by the same model (or 
ensemble of models; Fig. 1B). CMIP6 created an ensemble of 
projections for a discrete range of climate scenarios. Broadly, 
the uncertainty is given by the range between the highest and 
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lowest emissions scenarios (SSP585 and SSP119 in CMIP6). 
It has been argued, though, that the extreme high and low 
scenarios are less plausible and unnecessarily inflate uncer-
tainty (Hausfather and Peters 2020). Communities of prac-
tice are forming to help inform relevant scenario selection by 
users (Stammer et al. 2021). 

The relative magnitude of each source of uncertainty 
(internal, model, and scenario) largely depends on the spatial 
and temporal scales and variables of interest (Hawkins and 
Sutton 2009). At global averaging scales, scenario uncertainty 
tends to dominate, and internal variability is typically the 
least important, particularly in the distant future. However, 
at regional scales and for nearer-term time horizons (< 20 
years), model variability and internal variability can be sig-
nificantly larger (Frölicher et al. 2016). 

Propagation of climate projection uncertainties into 
downstream SDM models presents a challenge. Ideally, SDM 
projections would be generated from all possible regional 
models, which had downscaled all possible ESMs, for all 
possible scenarios. While this approach is not practically 
possible, it conceptually illustrates the full cascade of uncer-
tainty, which increases at each step of the process in mov-
ing from ESM climate projections to end-use impact studies 
such as species’ distributions (Falloon et al. 2014). A more 
feasible approach to estimating these uncertainties is to gen-
erate several SDM projections from a representative range 
of regional models, which themselves are driven by a rep-
resentative ensemble of ESMs and scenarios. Unfortunately, 
the necessary data for these robust uncertainty estimates 
are often not available. While there is some coordination 
under projects like the Coordinated Regional Downscaling 
Experiment (CORDEX; Giorgi and Gutowski 2015), there 
is no equivalent to the CMIP ensemble, particularly for the 
ocean. Regional downscaling techniques are briefly described 
here and for a more complete description of the commonly 
used methods and their use in ecology, the reader is referred 
to Harris et al. (2014) and Giorgi (2019). Hence, if global 
model projections are not sufficient, users are forced to con-
struct these representative downscaled ensembles themselves, 
and to be explicit about the uncertainties that cannot be rep-
resented in their SDM projections. 

8. Identify SDM uncertainty
SDMs can have at least three main sources of uncertainty 
(sensu Hilborn 1987). The first is from regular environmen-
tal and biological variation (‘noise’) that influences a species’ 
distribution but is well observed and can be accounted for in 
a model and contributes to parameter uncertainty and obser-
vation error (Fig. 1A). The second source of uncertainty is the 
impact of extreme and unpredictable events, and their effect 
on species’ distributions, which can be dramatic (Anderson 
and Ward 2019). Unanticipated events (e.g. tsunamis, disease 
outbreaks, extreme heat waves) not captured in the observa-
tions used to fit the SDM may only be partially accounted for 
in the SDM projections. For example, it may be unknown 
how a species will respond to extreme temperatures that are 
beyond observed values used to build the projections and 
beyond the documented temperature range for the species. 

Finally, there is the uncertainty stemming from ecological 
patterns and processes that are only partially understood, or 
what Hilborn (1987) calls uncertain states of nature. This 
can include uncertainty related to climate model outputs 
(guideline 7), the suitability of one environmental variable 
as a proxy for another, and the influence of eco-evolutionary 
processes (e.g. species’ interactions, dispersal limitation, local 
adaptation; guideline 9). 

Predictions from multiple SDMs can be used to charac-
terize uncertainty arising from multiple possible structural 
assumptions reflecting possible states of nature (Thuiller et al. 
2019, Nephin et al. 2020). Such structural assumptions could 
include the form with which variables act on species’ distribu-
tion (e.g. linear, log-linear, quadratic, smooth, or breakpoint), 
whether latent variables exist (Brodie et al. 2020), and even 
whether covariate relationships are changing through time 
(Anderson et al. 2022) and/or space (Thorson et al. 2023). 
The range of possible projections can then be characterized, 
and projections combined through ensemble approaches if 
desired (guideline 6; Fig. 1D). 

It is critical to evaluate model projection accuracy and 
whether projection uncertainty intervals are appropriate. 
Cross-validation provides a general tool to accomplish this 
(Hastie et al. 2009, Roberts et al. 2017, Yates et al. 2022). In 
cross validation, a dataset is split, and models are constructed 
with portions of the data while comparing predictions to the 
left-out portion. Common data splitting strategies include 
splitting by data point (‘leave-one-out’) or by larger folds 
(‘k-fold’) with statistical implications around such a choice 
(Hastie  et  al. 2009, Yates  et  al. 2022). Central to effective 
cross-validation is choosing an appropriate blocking scheme 
to characterize the uncertainty of interest – such a block-
ing scheme might be by time, space, phylogenetic distance, 
various grouping structures, or some combination thereof 
(Roberts  et  al. 2017). For example, withholding the most 
recent temporal block in a cross-validation can be used to 
evaluate an SDM’s forecast ability. Projection accuracy can be 
quantified through scoring rules (Gneiting and Raftery 2007, 
Yates et al. 2022) and the scale of uncertainty intervals can be 
evaluated by measuring the frequency with which such inter-
vals include the left-out observed values (‘coverage’). Despite 
the importance of cross-validation, it is important to consider 
that no cross-validation strategy may fully encompass the 
uncertainty introduced by predicting under the novel climate 
conditions we face (Wenger and Olden 2012).

To accurately project uncertainty from SDMs, models 
needs to be statistically valid and account for major sources 
of residual correlation caused by sampling schemes or spatial 
correlation from unmodeled covariates (Legendre and Fortin 
1989). Whenever possible, SDM model uncertainty should 
be included in projections through error propagation meth-
ods (e.g. via hierarchical modeling or simulation–extrapola-
tion; Stoklosa et al. 2015). Random effects provide a unified 
framework with which to integrate over uncertainty from 
latent variables and residual correlation (Shelton et al. 2014, 
Thorson and Minto 2014, Anderson et al. 2022). However, 
the omission of relevant climate variables may cause spatial 
or spatiotemporal random effects to absorb climate-driven 
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variation and thereby underestimate projected impacts of 
climate change (guideline 5), and spatial random effects can 
distort the perceived contribution of covariates if the two are 
correlated, although approaches to maintain orthogonality 
exist under some modeling frameworks (Hodges and Reich 
2010). 

9. Identify eco-evolutionary uncertainty
Correlative SDM modeling assumes that a species’ environ-
mental niche can be estimated by correlating occurrences or 
abundances with environmental variation across space (Elith 
and Leathwick 2009, Blois  et  al. 2013); in other words, 
they assume that the current associations between species 
and environmental gradients across space will be predic-
tive of the way those species respond as the climate changes 
through time. However, environmental conditions are only 
one determinant of species’ distributions. Distributions are 
also influenced by interactions with other species, spatial 
patterns of dispersal, and stochasticity (i.e. random events; 
Vellend 2016, Thompson et al. 2020). Furthermore, SDMs 
also assume that all individuals of a species share the same 
environmental response curves (Zurell et al. 2020), but this 
may not be true if subpopulations are locally adapted to the 
conditions they experience (Aitken  et  al. 2008) or if envi-
ronmental responses differ across life stages in an organism 
(Kingsolver et al. 2011). Together, eco-evolutionary processes 
make the relationship between species’ distributions and 
environmental conditions context-dependent (Urban  et  al. 
2016) which introduces three types of uncertainty when 
SDMs are used to project responses to future conditions: 1) 
uncertainty in the model parameters (Fig. 1A); 2) uncertainty 
in the assumption that all individuals within a species will 
share the same environmental responses; and 3) uncertainty 
in how well current species-environment relationships will 
reflect future species-environment relationships. 

While parameter uncertainty may be partially captured 
in that of the fitted model (guideline 8; Fig. 1), uncertainty 
regarding how eco-evolutionary processes will alter species-
environment relationships will not be. This uncertainty stems 
from eco-evolutionary processes influencing whether or not 
a species will shift its distribution at the same rate as the 
climate changes (Urban  et  al. 2016). If species are disper-
sal limited or if habitat connectivity is low, they may not be 
able to shift their distributions fast enough to keep pace with 
the changing climate (Schloss et al. 2012). Species will also 
only be able to establish in new habitats if there is sufficient 
food; if obligate mutualists are also present; and if predators, 
competitors, parasites, and diseases are not too abundant or 
prevalent (Zarnetske et al. 2012, Brown and Vellend 2014, 
Alexander et al. 2015, Thompson and Gonzalez 2017). The 
northward movement of the predatory whelk Mexacanthina 
lugubris into new habitats is an example of range expan-
sion that is mediated by a trophic interaction (Wallingford 
and Sorte 2022). Alternatively, the loss of a competitor or 
predator may allow a species to expand its distribution to a 
wider range of environmental conditions than it historically 
occupied (Urli et al. 2016). Additionally, species that adapt 

– either evolutionarily or behaviorally – quickly to chang-
ing environmental conditions will not need to shift their 
distributions as quickly, if at all (Bell and Gonzalez 2009, 
Carlson et al. 2014, Thompson and Fronhofer 2019). These 
complex eco-evolutionary processes mean that species distri-
butions under future climates will inevitably differ from what 
SDMs project based on current species’ environmental asso-
ciations, and thus should be communicated as hypotheses 
(Urban et al. 2016). Such deviations may be due to the emer-
gence of extreme and unpredictable events (Anderson et al. 
2017) such as disease outbreaks, species’ interactions, inva-
sive species, or simply from the fact that species’ ranges may 
not perfectly track changes in climate (Wiens 2016). 

Over the last several years some SDMs incorporate more 
biological realism. A recent advance is the move from single-
species’ models to multi-species models known as joint spe-
cies distribution models (JSDMs; Warton et al. 2015). For 
example, JSDMs have been used to understand the joint 
influence of ongoing environmental change and fishing pres-
sure on groundfish species’ richness in Canada’s Pacific waters 
(Thompson  et  al. 2022). The flexible hierarchical structure 
makes it possible to account for correlation among species 
and provide more robust uncertainty estimates, and allows 
relevant biological information (e.g. functional trait and 
phylogenetic information) to be added to the model. While 
species’ correlations from JSDMs do not necessarily repre-
sent species’ interactions (Pollock et al. 2014, Dormann et al. 
2018), they can be used to understand when there is sub-
stantial statistical correlation between species in their shared 
response to the environment (as represented in the model) 
or residual correlation (not explained by the model). Finally, 
there are models for different taxonomic and spatial scales 
(e.g. for alpha, beta, and gamma diversity; summarized in 
Pollock et al. 2020) that may be appropriate depending on 
specific objectives. For example, if an objective can be evalu-
ated with species’ diversity or aggregate biomass rather than 
information from individual species, then macroecologi-
cal models may provide sufficient results with fewer input 
data than species-specific models. However, it is important 
to consider that although these strategies will produce a bet-
ter estimate of environmental response curves they may not 
necessarily resolve all eco-evolutionary uncertainty. 

Eco-evolutionary uncertainty is distinct from uncertainty 
associated with statistical model fitting (guideline 8) and from 
climate model uncertainty (guideline 7). In cases where evi-
dence of local adaptation or phenotypic plasticity to climate 
variation is available, this information can be incorporated 
into SDMs (Benito Garzón et al. 2011, Homburg et al. 2014, 
Valladares et al. 2014, Lowen et al. 2019); however, for most 
species, this information is lacking. One signal of local adap-
tation is that SDM parameter coefficients may vary across 
the species’ range. In addition, practitioners can account for 
eco-evolutionary uncertainty in the interpretation and com-
munication of the results (guideline 10). Much of the uncer-
tainty associated with eco-evolutionary processes stems from 
whether species will successfully establish in new locations, 
and whether they will be lost in areas where conditions are 
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projected to become unsuitable. Researchers can be reason-
ably certain of areas where species are projected to persist 
in future climates, but less certain of areas where species are 
projected to shift, and this can be highlighted when com-
municating SDM results (Fig. 1E, Box 1). Where species are 
expected to shift, either as a range retraction or an expansion, 
monitoring programs can help to understand species’ range 
dynamics and provide data to refine model(s) over time. 

Box 1: No regrets strategy

No regrets strategies for climate change adaptation are 
based on present day actions that can be undertaken 
without understanding all dimensions and impacts 
of climate change (Circles of Social Life 1996, IPCC 
1996). Focusing spatial planning effort on areas that 
are projected to remain suitable for a focal species (e.g. 
Fig. 1E) offers a no regrets (sensu Heltberg et al. 2009, 
Hoegh-Guldberg and Bruno John 2010) strategy for 
dealing with much of the uncertainty associated with 
SDM projections. While practitioners can aim to reduce 
uncertainty in the modeling process, they can also pres-
ent model outputs in ways that have the highest confi-
dence. Where predicted and projected probabilities of 
suitable habitat overlap, there is greater certainty that 
the species’ presence will not change, and a greater like-
lihood that such space will meet resource management 
operational goals (Kujala et al. 2013a, b). In these areas, 
conservation will benefit the species now, and focuses 
attention on areas of the species’ projected range where 
SDM models have the highest certainty. An evidence-
based no regrets strategy can inform risk management 
and decision making processes (Makino et al. 2015).

10. Communicate the results and uncertainties
For SDM projections to be used appropriately in science-
based decision making, it is imperative that the results and 
associated uncertainty are communicated effectively to 
both technical and non-technical audiences (Baron 2010, 
Raimi et al. 2017, Corner et al. 2018). In the context of the 
changing ocean, where ideal marine management decisions 
achieve objectives both now and in the future, the clear com-
munication of results aids in identifying data deficiencies and 
reducing misinterpretation or dismissal of important findings 
(Brodie  et  al. 2022, Jansen  et  al. 2022). Meaningful maps 
of uncertainty across the study area are indispensable for 
interpreting results by identifying areas of certainty (Fig. 1). 
Specifically, they can be used to visualize which areas within 
a projection will have suitable environmental conditions for 
the species of interest and a low level of uncertainty in the 
model components and outputs. However, a recent literature 
search of species’ distribution modeling papers published in 
2020 found that 96% of papers did not include uncertainty 
maps (Jansen et al. 2022).

Communication with the end users should consider their 
knowledge, expertise, and values (Raimi  et  al. 2017). Use 
of common and non-technical language to state the intent, 
spatial, and temporal context of the projection will clarify 
to end users how the SDM can support operational needs. 
For example, the ‘And, But, Therefore’ approach described in 
Olson (2015) can be implemented to create a story contain-
ing three distinct components, by introducing a specific issue 
(‘And’), identifying a conflict (‘But’), and providing a resolu-
tion (‘Therefore’). This storyline can help researchers clarify 
important decisions made during the analysis process. Where 
possible, the narrative should communicate results for time 
scales relevant to management. Managers often seek advice 
for operational needs over the next five years, while climate 
change models project over a 50–100-year time scale. While 
this is a time scale mismatch, researchers can use projections 
into the future to illustrate the implications for decision mak-
ing in the present day. Involving end users throughout the 
development of SDM projections will ensure that research-
ers are aware of the values held by end users in the decision 
context, while end users understand the scope, proper inter-
pretation, and limitations of model outputs (Dietz 2013, 
Guillera-Arroita et al. 2015, Villero et al. 2017). When com-
municating results the narrative should lead first with all the 
information that is known or more certain, followed by the 
process of discussing uncertainties and strategies to address 
them (Corner  et  al. 2018). It is important to acknowledge 
that uncertainties, both quantifiable and unquantifiable, 
exist in the modeling process and cannot be fully eliminated. 
Study caveats, and the potential for major assumption vio-
lations during the analytical process, should be transpar-
ently communicated (US National Research Council 2008). 
Communication strategies for quantifiable uncertainties 
should include using standardized descriptions for state-
ments of uncertainty; for example the IPCC has developed 
seven verbal descriptions of uncertainty, such as ‘unlikely’ and 
‘very likely’ to convey the probability of a projected outcome 
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(Table 1 in Budescu et al. 2012, IPCC 2021). A certainty-
focused approach can help reduce uncertainty paralysis and 
improve objectives-based risk management associated with 
climate-mediated change (Duplisea et al. 2021, Roux et al. 
2022). 

Conclusion

Based on recommendations of an international workshop of 
SDM experts, we have outlined potential sources of uncer-
tainty linked to the various stages of analysis needed to com-
plete an SDM projection into future climates (Table 1). This 
begins with the need to identify sources of uncertainty dur-
ing goal setting and at the onset of an analysis (guidelines 1 
and 2), while selecting relevant data sources (guidelines 3–5), 
throughout model building and evaluation (guideline 6), 
right through uncertainty estimation and the interpretation 
of results (guidelines 7–9) and, finally, during the communi-
cation of results (guideline 10). 

Through the application of SDM outputs, researchers and 
end users may identify important data gaps or other elements 
that need to be reassessed for clarity; this feedback can lead 
to iterative improvement of both the analytical process and 
resulting outputs. The need to build a community of practice 
that includes a diversity of perspectives and skills for pro-
jecting marine species’ distributions is a challenge and a gap. 
Partnerships between scientists, practitioners, and managers 
are necessary to evaluate approaches that can lead to clear and 
consistent standards and science advice to support a variety 
of marine spatial planning decisions now and in the years to 
come. 

Many ecosystems have species and environmental data 
shortfalls that will limit a modeler’s ability to minimize some 
sources of uncertainty in SDM projections. For example, 
there are currently few datasets available of downscaled, high-
resolution climate variables for marine regions and no coor-
dinated global effort to develop them. However, even in the 
absence of such data, these guidelines provide practical steps 
for identifying the relevant sources of uncertainty, quantify-
ing their magnitude (if possible), and communicating their 
effects. Following these guidelines will help practitioners to 
identify areas of higher confidence where species’ distribu-
tions are not expected to change. SDM projections may rep-
resent the best available knowledge to inform management 
strategies; thus, it is essential to acknowledge and report on 
uncertainty to avoid poor management decisions. By follow-
ing the guidelines laid out in this review and communicating 
the decisions that were made throughout the analysis process, 
SDM projections can be informative to researchers, manag-
ers, and policy makers interested in planning for a changing 
and uncertain future climate.

Acknowledgements – The authors would like to thank all members 
of the Fisheries and Oceans Canada Future Habitats working group 
and all participants of the Species Distribution Modeling in a 

Changing Climate Workshop held virtually on 11–12 March 2021. 
We thank J. Finney for comments that substantially improved the 
manuscript.
Funding – Funding was provided by Fisheries and Oceans Canada 
Aquatic Climate Change and Adaptation Services Program.

Author contributions

Sarah C. Davies: Conceptualization (equal); Methodology 
(lead); Project administration (lead); Visualization (support-
ing); Writing – original draft (lead); Writing – review and 
editing (lead). Patrick L. Thompson: Conceptualization 
(equal); Methodology (supporting); Project administration 
(supporting); Visualization (supporting); Writing – original 
draft (supporting); Writing – review and editing (supporting). 
Catalina Gomez: Visualization (lead); Writing – original 
draft (supporting); Writing – review and editing (support-
ing). Jessica Nephin: Writing – original draft (supporting); 
Writing – review and editing (supporting). Anders Knudby: 
Writing – original draft (supporting); Writing – review and 
editing (supporting). Ashley E. Park: Methodology (sup-
porting); Writing – original draft (supporting); Writing – 
review and editing (supporting). Sarah K. Friesen: Writing 
– original draft (supporting); Writing – review and editing 
(supporting). Laura J. Pollock: Methodology (supporting); 
Writing – original draft (supporting); Writing – review and 
editing (supporting). Emily M. Rubidge: Writing – original 
draft (supporting); Writing – review and editing (support-
ing). Sean C. Anderson: Writing – original draft (support-
ing); Writing – review and editing (supporting). Josephine 
C. Iacarella: Writing – original draft (supporting); Writing 
– review and editing (supporting). Devin A. Lyons: Writing 
– original draft (supporting); Writing – review and editing 
(supporting). Andrew MacDonald: Methodology (sup-
porting); Writing – original draft (supporting); Writing 
– review and editing (supporting). Andrew McMillan: 
Writing – original draft (supporting); Writing – review and 
editing (supporting). Eric J. Ward: Writing – original draft 
(supporting); Writing – review and editing (supporting). 
Amber M. Holdsworth: Writing – original draft (support-
ing); Writing – review and editing (supporting). Neil Swart: 
Writing – original draft (supporting); Writing – review and 
editing (supporting). Jeff Price: Writing – review and editing 
(supporting). Karen L. Hunter: Conceptualization (equal); 
Funding acquisition (lead); Methodology (supporting); 
Project administration (supporting); Visualization (support-
ing); Writing – original draft (supporting); Writing – review 
and editing (supporting).

Transparent peer review

The peer review history for this article is available at https://
publons.com/publon/10.1111/ecog.06731.

Data availability statement

Data sharing is not applicable to this article as no new data 
were created or analyzed in this study.

https://publons.com/publon/10.1111/ecog.06731
https://publons.com/publon/10.1111/ecog.06731


Page 13 of 18

References

Aho, K., Derryberry, D. and Peterson, T. 2014. Model selection for 
ecologists: the worldviews of AIC and BIC. – Ecology 95: 
631–636.

Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. and Curtis‐
McLane, S. 2008. Adaptation, migration or extirpation: cli-
mate change outcomes for tree populations. – Evol. Appl. 1: 
95–111.

Alexander, J. M., Diez, J. M. and Levine, J. M. 2015. Novel com-
petitors shape species’ responses to climate change. – Nature 
525: 515–518.

Allyn, A. J., Alexander, M. A., Franklin, B. S., Massiot-Granier, F., 
Pershing, A. J., Scott, J. D. and Mills, K. E. 2020. Comparing 
and synthesizing quantitative distribution models and qualita-
tive vulnerability assessments to project marine species distribu-
tions under climate change. – PLoS One 15: e0231595.

Anderson, R. P. 2013. A framework for using niche models to 
estimate impacts of climate change on species distributions. – 
Ann. N. Y. Acad. Sci. 1297: 8–28 .

Anderson, S. C. and Ward, E. J. 2019. Black swans in space: mod-
eling spatiotemporal processes with extremes. – Ecology 100: 
e02403. 

Anderson, S. C., Cooper, A. B., Jensen, O. P., Minto, C., Thorson, 
J. T., Walsh, J. C., Afflerbach, J., Dickey‐Collas, M., Kleisner, 
K. M. and Longo, C. 2017. Improving estimates of population 
status and trend with superensemble models. – Fish Fish. 18: 
732–741.

Anderson, S. C., Ward, E. J., English, P. A. and Barnett, L. A. K. 
2022. sdmTMB: an R package for fast, flexible, and user-
friendly generalized linear mixed effects models with spatial and 
spatiotemporal random fields. – bioRxiv.

Araújo, M. B. and New, M. 2007. Ensemble forecasting of species 
distributions. – Trends Ecol. Evol. 22: 42–47.

Araújo, M. and Peterson, A. 2012. Uses and misuses of bioclimatic 
envelope models. – Ecology 93: 1527–1539.

Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., 
Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, 
L., Naimi, B., O’Hara, R. B., Zimmermann, N. E. and Rahbek, 
C. 2019. Standards for distribution models in biodiversity 
assessments. – Sci. Adv. 5: eaat4858.

Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A. 
and De Clerck, O. 2018. Bio-ORACLE v2.0: extending marine 
data layers for bioclimatic modelling. – Global Ecol. Biogeogr. 
27: 277–284.

Austin, M. P. and Van Niel, K. P. 2011. Improving species distribu-
tion models for climate change studies: variable selection and 
scale. – J. Biogeogr. 38: 1–8. 

Barbet-Massin, M. and Jetz, W. 2014. A 40-year, continent-wide, 
multispecies assessment of relevant climate predictors for spe-
cies distribution modelling. – Divers. Distrib. 20: 1285–1295.

Barbet-Massin, M., Thuiller, W. and Jiguet, F. 2010. How much 
do we overestimate future local extinction rates when restricting 
the range of occurrence data in climate suitability models? – 
Ecography 33: 878–886.

Baron, N. 2010. Escape from the ivory tower : a guide to making 
your science matter. – Island Press.

Batalden, R. V., Oberhauser, K. and Peterson, A. T. 2007. Eco-
logical niches in sequential generations of eastern North Amer-
ican monarch butterflies (Lepidoptera: Danaidae): the ecology 
of migration and likely climate change implications. – Environ. 
Entomol. 36: 1365–1373. 

Bateman, B., Vanderwal, J. and Johnson, C. 2012. Nice weather 
for bettongs: using weather events, not climate means, in species 
distribution models. – Ecography 35: 306–314.

Beaumont, L., Hughes, L. and Poulsen, M. 2005. Predicting species 
distributions: use of climatic parameters in BIOCLIM and its 
impact on predictions of species' current and future distribu-
tions. – Ecol. Model. 186: 251–270.

Beck, J., Böller, M., Erhardt, A. and Schwanghart, W. 2014. Spatial 
bias in the GBIF database and its effect on modeling species' 
geographic distributions. – Ecol. Inform. 19: 10–15.

Bell, D. and Schlaepfer, D. 2016. On the dangers of model com-
plexity without ecological justification in species distribution 
modeling. – Ecol. Model. 330: 50–59. 

Bell, G. and Gonzalez, A. 2009. Evolutionary rescue can prevent 
extinction following environmental change. – Ecol. Lett. 12: 
942–948.

Benito Garzón, M., Alía, R., Robson, T. M. and Zavala, M. A. 
2011. Intra-specific variability and plasticity influence potential 
tree species distributions under climate change. – Global Ecol. 
Biogeogr. 20: 766–778.

Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. and 
Ferrier, S. 2013. Space can substitute for time in predicting 
climate-change effects on biodiversity. – Proc. Natl Acad. Sci. 
USA 110: 9374–9379.

Bosch, S., Tyberghein, L., Deneudt, K., Hernandez, F. and De 
Clerck, O. 2018. In search of relevant predictors for marine 
species distribution modelling using the MarineSPEED bench-
mark dataset. – Divers. Distrib. 24: 144–157. 

Boyd, P. W., Rynearson, T. A., Armstrong, E. A., Fu, F., Hayashi, 
K., Hu, Z., Hutchins, D. A., Kudela, R. M., Litchman, E., 
Mulholland, M. R., Passow, U., Strzepek, R. F., Whittaker, K. 
A., Yu, E. and Thomas, M. K. 2013. Marine phytoplankton 
temperature versus growth responses from polar to tropical 
waters – outcome of a scientific community-wide study. – PLoS 
One 8: e63091.

Bradie, J. and Leung, B. 2017. A quantitative synthesis of the 
importance of variables used in MaxEnt species distribution 
models. – J. Biogeogr. 44: 1344–1361. 

Brodie, S. J., Thorson, J. T., Carroll, G., Hazen, E. L., Bograd, S., 
Haltuch, M. A., Holsman, K. K., Kotwicki, S., Samhouri, J. F., 
Willis-Norton, E. and Selden, R. L. 2020. Trade-offs in covar-
iate selection for species distribution models: a methodological 
comparison. – Ecography 43: 11–24. 

Brodie, S.  et  al. 2022. Recommendations for quantifying and 
reducing uncertainty in climate projections of species distribu-
tions. – Global Change Biol. 28: 6586–6601. 

Brown, C. D. and Vellend, M. 2014. Non-climatic constraints on 
upper elevational plant range expansion under climate change. 
– Proc. R. Soc. B 281: 20141779.

Budescu, D. V., Por, H.-H. and Broomell, S. B. 2012. Effective 
communication of uncertainty in the IPCC reports. – Clim. 
Change 113: 181–200. 

Carlson, S. M., Cunningham, C. J. and Westley, P. A. 2014. Evo-
lutionary rescue in a changing world. – Trends Ecol. Evol. 29: 
521–530.

Carr, M. H., Neigel, J. E., Estes, J. A., Andelman, S., Warner, R. 
R. and Largier, J. L. 2003. Comparing marine and terrestrial 
ecosystems: implications for the design of coastal marine 
reserves. – Ecol. Appl. 13: S90–S107.

Charney, N. D., Record, S., Gerstner, B. E., Merow, C., Zarnetske, 
P. L. and Enquist, B. J. 2021. A test of species distribution 
model transferability across environmental and geographic 



Page 14 of 18

space for 108 western North American tree species. – Front. 
Ecol. Evol. 9: 1–16.

Christin, S., Hervet, É. and Lecomte, N. 2019. Applications for 
deep learning in ecology. – Methods Ecol. Evol. 10: 
1632–1644.

Circles of Social Life. 1996. No regrets: circles of climate change 
adaptation. – Circles of Climate.

Corner, A., Shaw, C. and Clarke, J. 2018. Principles for effective 
communication and public engagement on climate change. A 
handbook for IPCC authors. – Climate Outreach.

Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. and 
Wood, S. 1998. Making mistakes when predicting shifts in spe-
cies range in response to global warming. – Nature 391: 
783–786.

Dietz, T. 2013. Bringing values and deliberation to science com-
munication. – Proc. Natl. Acad. Sci. USA 110: 14081.

Dormann, C., Bobrowski, M., Dehling, M., Harris, D., Hartig, F., 
Lischke, H., Moretti, M., Pagel, J., Pinkert, S., Schleuning, M., 
Schmidt, S., Sheppard, C., Steinbauer, M., Zeuss, D. and 
Kraan, C. 2018. Biotic interactions in species distribution mod-
elling: 10 questions to guide interpretation and avoid false con-
clusions. – Global Ecol. Biogeogr. 27: 1004–1016.

Duplisea, D. E., Roux, M.-J., Hunter, K. L. and Rice, J. 2021. Fish 
harvesting advice under climate change: a risk-equivalent 
empirical approach. – PLoS One 16: e0239503.

Elith, J. and Leathwick, J. R. 2009. Species distribution models: 
ecological explanation and prediction across space and time. – 
Ann. Rev. Ecol. Evol. Syst. 40: 677–697.

Elith, J., Burgman, M. A. and Regan, H. M. 2002. Mapping epis-
temic uncertainties and vague concepts in predictions of species 
distribution. – Ecol. Model. 157: 313–329. 

Elith, J., Leathwick, J. R. and Hastie, T. 2008. A working guide to 
boosted regression trees. – J. Anim. Ecol. 77: 802–813. 

English, P. A., Ward, E. J., Rooper, C. N., Forrest, R. E., Rogers, 
L. A., Hunter, K. L., Edwards, A. M., Connors, B. M. and 
Anderson, S. C. 2021. Contrasting climate velocity impacts in 
warm and cool locations show that effects of marine warming 
are worse in already warmer temperate waters. – Fish Fish. 23: 
239–255. 

Essington, T. E., Anderson, S. C., Barnett, L. A. K., Berger, H. M., 
Siedlecki, S. A. and Ward, E. J. 2022. Advancing statistical 
models to reveal the effect of dissolved oxygen on the spatial 
distribution of marine taxa using thresholds and a physiologi-
cally based index. – Ecography 2022: e06249. 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., 
Stouffer, R. J. and Taylor, K. E. 2016. Overview of the coupled 
model intercomparison project phase 6 (CMIP6) experimental 
design and organization. – Geosci. Model Dev. 9: 1937–1958.

Falloon, P., Challinor, A., Dessai, S., Hoang, L., Johnson, J. and 
Koehler, A.-K. 2014. Ensembles and uncertainty in climate 
change impacts. – Front. Environ. Sci. 2: 1–7. 

Flato, G. M. 2011. Earth system models: an overview. – WIREs 
Clim. Change 2: 783–800. 

Fletcher, R. J., Hefley, T. J., Robertson, E. P., Zuckerberg, B., 
McCleery, R. A. and Dorazio, R. M. 2019. A practical guide 
for combining data to model species distributions. – Ecology 
100: e02710. 

Franco, J. N., Tuya, F., Bertocci, I., Rodríguez, L., Martínez, B., 
Sousa-Pinto, I. and Arenas, F. 2018. The ‘golden kelp’ Lami-
naria ochroleuca under global change: integrating multiple eco-
physiological responses with species distribution models. – J. 
Ecol. 106: 47–58. 

Franklin, J., Davis, F., Ikegami, M., Syphard, A., Flint, L., Flint, 
A. and Hannah, L. 2013. Modeling plant species distributions 
under future climates: how fine scale do climate projections 
need to be? – Global Change Biol. 19: 473–483.

Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. and 
Halpern, B. S. 2020. Cold range edges of marine fishes track 
climate change better than warm edges. – Global Change Biol. 
26: 2908–2922. 

Freeman, E. and Moisen, G. 2008. A comparison of the perfor-
mance of threshold criteria for binary classification in terms 
of predicted prevalence and kappa. – Ecol. Model. 217: 
48–58. 

Frieler, K. et al. 2017. Assessing the impacts of 1.5°C global warm-
ing – simulation protocol of the inter-sectoral impact model 
intercomparison project (ISIMIP2b). – Geosci. Model Dev. 10: 
4321–4345.

Frölicher, T. L., Rodgers, K. B., Stock, C. A. and Cheung, W. W. 
L. 2016. Sources of uncertainties in 21st century projections of 
potential ocean ecosystem stressors. – Global Biogeochem. 
Cycles 30: 1224–1243. 

Gamliel, I., Buba, Y., Guy-Haim, T., Garval, T., Willette, D., Rilov, 
G. and Belmaker, J. 2020. Incorporating physiology into spe-
cies distribution models moderates the projected impact of 
warming on selected Mediterranean marine species. – Ecogra-
phy 43: 1090–1106. 

Gardner, A. S., Maclean, I. M. D. and Gaston, K. J. 2019. Climatic 
predictors of species distributions neglect biophysiologically 
meaningful variables. – Divers. Distrib. 25: 1318–1333. 

Gardner, A. S., Gaston, K. J. and Maclean, I. M. D. 2021. Account-
ing for inter-annual variability alters long-term estimates of 
climate suitability. – J. Biogeogr. 48: 1960–1971. 

Gelman, A., Meng, X.-L. and Stern, H. 1996. Posterior predictive 
assessment of model fitness via realized discrepancies. – Stat. 
Sin. 6: 733–760.

Giorgi, F. 2019. Thirty years of regional climate modeling: where 
are we and where are we going next? – J. Geophys. Res. 
Atmosph. 124: 5696–5723. 

Giorgi, F. and Gutowski, W. J. 2015. Regional dynamical downscal-
ing and the CORDEX initiative. – Annu. Rev. Environ. Res. 
40: 467–490.

Gneiting, T. and Raftery, A. 2007. Strictly proper scoring rules, 
prediction, and estimation. – J. Am. Stat. Assoc. 102: 359–378.

Gomez, C., Nephin, J., Lang, S., Feyrer, L., Keyser, F. and Lazin, 
G. 2021. Spatial data, analysis and modelling forums: an ini-
tiative to broaden the collaborative research potential at DFO. 
– Canadian technical report of fisheries and aquatic sciences, 
1488–5379, 3416. Fisheries and Oceans Canada.

Gottschalk, T. K., Aue, B., Hotes, S. and Ekschmitt, K. 2011. 
Influence of grain size on species–habitat models. – Ecol. 
Model. 222: 3403–3412. 

Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., 
Kujala, H., Lentini, P. E., McCarthy, M. A., Tingley, R. and 
Wintle, B. A. 2015. Is my species distribution model fit for 
purpose? Matching data and models to applications. – Global 
Ecol. Biogeogr. 24: 276–292. 

Hao, T., Elith, J., Lahoz‐Monfort, J. J. and Guillera‐Arroita, G. 
2020. Testing whether ensemble modelling is advantageous for 
maximising predictive performance of species distribution 
models. – Ecography 43: 549–558.

Harris, R. M. B., Grose, M. R., Lee, G., Bindoff, N. L., Porfirio, 
L. L. and Fox-Hughes, P. 2014. Climate projections for ecolo-
gists. – WIREs Clim. Change 5: 621–637. 



Page 15 of 18

Hastie, T., Tibshirani, R. and Friedman, J. 2009. The elements of 
statistical learning: data mining, inference, and prediction. – 
Springer.

Hausfather, Z. and Peters, G. 2020. Emissions – the ‘business as 
usual’ story is misleading. – Nature 577: 618–620.

Hawkins, E. and Sutton, R. 2009. The potential to narrow uncer-
tainty in regional climate predictions. – Bull. Am. Meteorol. 
Soc. 90: 1095–1108.

Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, 
W. and Sykes, M. T. 2006. Methods and uncertainties in bio-
climatic envelope modelling under climate change. – Prog. 
Phys. Geogr. Earth Environ. 30: 751–777.

Heltberg, R., Siegel, P. B. and Jorgensen, S. L. 2009. Addressing 
human vulnerability to climate change: Toward a ‘no-regrets’ 
approach. – Global Environ. Change 19: 89–99. 

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, 
A. 2005. Very high resolution interpolated climate surfaces for 
global land areas. – Int. J. Climatol. 25: 1965–1978. 

Hilborn, R. 1987. Living with uncertainty in resource manage-
ment. – North Am. J. Fish. Manag. 7: 1–5.

Hodges, J. S. and Reich, B. J. 2010. Adding spatially-correlated 
errors can mess up the fixed effect you love. – Am. Stat. 64: 
325–334.

Hoegh-Guldberg, O. and Bruno John, F. 2010. The impact of cli-
mate change on the world’s marine ecosystems. – Science 328: 
1523–1528.

Hof, A., Jansson, R. and Nilsson, C. 2012. The usefulness of eleva-
tion as a predictor variable in species distribution modelling. 
– Ecol. Model. 246: 86–90.

Holdsworth, A. M., Zhai, L., Lu, Y. and Christian, J. R. 2021. 
Future changes in oceanography and biogeochemistry along the 
Canadian Pacific continental margin. – Front. Mar. Sci. 8: 
1–20.

Holt, R. D. 1990. The microevolutionary consequences of climate 
change. – Trends Ecol. Evol. 5: 311–315. 

Homburg, K., Brandt, P., Drees, C. and Assmann, T. 2014. Evo-
lutionarily significant units in a flightless ground beetle show 
different climate niches and high extinction risk due to climate 
change. – J. Insect Conserv. 18: 781–790.

IPCC 1996. A brief overview of the IPCC second assessment 
report. Climate change bulletin (10). – Secretariat for the UN 
Climate Change Convention.

IPCC 2021. Climate change 2021: the physical science basis. Con-
tribution of working group I to the XIXth assessment report of 
the intergovernmental panel on climate change. – Cambridge 
Univ. Press.

IPCC 2022. Climate change 2022 impacts, adaptation and vul-
nerability: summary for policymakers. – Cambridge Univ. 
Press.

Isaac, N. J. B., Jarzyna, M. A., Keil, P., Dambly, L. I., Boersch-
Supan, P. H., Browning, E., Freeman, S. N., Golding, N., 
Guillera-Arroita, G., Henrys, P. A., Jarvis, S., Lahoz-Monfort, 
J., Pagel, J., Pescott, O. L., Schmucki, R., Simmonds, E. G. and 
O’Hara, R. B. 2020. Data integration for large-scale models of 
species distributions. – Trends Ecol. Evol. 35: 56–67. 

Iverson, L. R., Peters, M. P., Prasad, A. M. and Matthews, S. N. 
2019. Analysis of climate change impacts on tree species of the 
eastern US: results of DISTRIB-II modeling. – Forests 10: 302.

Jansen, J., Woolley, S. N. C., Dunstan, P. K., Foster, S. D., Hill, 
N. A., Haward, M. and Johnson, C. R. 2022. Stop ignoring 
map uncertainty in biodiversity science and conservation policy. 
– Nat. Ecol. Evol. 6: 828–829.

Jarnevich, C. S., Stohlgren, T. J., Kumar, S., Morisette, J. T. and 
Holcombe, T. R. 2015. Caveats for correlative species distribu-
tion modeling. – Ecol. Inform. 29: 6–15.

Johnson, K. F., Thorson, J. T. and Punt, A. E. 2019. Investigating 
the value of including depth during spatiotemporal index stand-
ardization. – Fish. Res. 216: 126–137. 

Johnston, A., Moran, N., Musgrove, A., Fink, D. and Baillie, S. R. 
2020. Estimating species distributions from spatially biased 
citizen science data. – Ecol. Model. 422: 108927. 

Kearney, M. and Porter, W. 2009. Mechanistic niche modelling: 
combining physiological and spatial data to predict species’ 
ranges. – Ecol. Lett. 12: 334–350.

Kingsolver, J. G., Arthur Woods, H., Buckley, L. B., Potter, K. A., 
MacLean, H. J. and Higgins, J. K. 2011. Complex life cycles 
and the responses of insects to climate change. – Oxford Univ. 
Press.

Kordas, R. L., Harley, C. D. G. and O'Connor, M. I. 2011. Com-
munity ecology in a warming world: the influence of tempera-
ture on interspecific interactions in marine systems. – J. Exp. 
Mar. Biol. Ecol. 400: 218–226. 

Kujala, H., Burgman, M. A. and Moilanen, A. 2013a. Treatment 
of uncertainty in conservation under climate change. – Conserv. 
Lett. 6: 73–85. 

Kujala, H., Moilanen, A., Araújo, M. B. and Cabeza, M. 2013b. 
Conservation planning with uncertain climate change projec-
tions. – PLoS One 8: e53315.

Laman, E. A., Rooper, C. N., Turner, K., Rooney, S., Cooper, D. 
W. and Zimmermann, M. 2017. Using species distribution 
models to describe essential fish habitat in Alaska. – Can. J. 
Fish. Aquat. Sci. 75: 1230–1255.

Legendre, P. and Fortin, M. J. 1989. Spatial pattern and ecological 
analysis. – Vegetatio 80: 107–138.

Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., 
Murienne, J. and Grenouillet, G. 2020. Species better track 
climate warming in the oceans than on land. – Nat. Ecol. Evol. 
4: 1044–1059.

Liu, C., White, M. and Newell, G. 2011. Measuring and compar-
ing the accuracy of species distribution models with presence-
absence data. – Ecography 34: 232–243.

Lowen, J. B., Hart, D. R., Stanley, R. R. E., Lehnert, S. J., Brad-
bury, I. R. and DiBacco, C. 2019. Assessing effects of genetic, 
environmental, and biotic gradients in species distribution 
modelling. – ICES J. Mar. Sci. 76: 1762–1775.

Luoto, M. and Heikkinen, R. K. 2008. Disregarding topographical 
heterogeneity biases species turnover assessments based on bio-
climatic models. – Global Change Biol. 14: 483–494. 

Makino, A., Klein, C. J., Possingham, H. P., Yamano, H., Yara, Y., 
Ariga, T., Matsuhasi, K. and Beger, M. 2015. The effect of 
applying alternate IPCC climate scenarios to marine reserve 
design for range changing species. – Conserv. Lett. 8: 320–328. 

Maraun, D. 2016. Bias correcting climate change simulations – a 
critical review. – Curr. Clim. Change Rep. 2: 211–220.

Martínez, B., Arenas, F., Trilla, A., Viejo, R. M. and Carreño, F. 
2015. Combining physiological threshold knowledge to species 
distribution models is key to improving forecasts of the future 
niche for macroalgae. – Global Change Biol. 21: 1422–1433. 

McKee, A., Grant, J. and Barrell, J. 2021. Mapping American lob-
ster (Homarus americanus) habitat for use in marine spatial 
planning. – Can. J. Fish. Aquat. Sci. 78: 704–720.

Merow, C., Smith, M. J., Edwards, T. C., Guisan, A., McMahon, 
S. M., Normand, S., Thuiller, W., Wüest, R. O., Zimmermann, 
N. E. and Elith, J. 2014. What do we gain from simplicity 



Page 16 of 18

versus complexity in species distribution models? – Ecography 
37: 1267–1281.

Merow, C., Wilson, A. M. and Jetz, W. 2017. Integrating occur-
rence data and expert maps for improved species range predic-
tions. – Global Ecol. Biogeogr. 26: 243–258. 

Monteiro, J. G., Jiménez, J. L., Gizzi, F., Přikryl, P., Lefcheck, J. 
S., Santos, R. S. and Canning-Clode, J. 2021. Novel approach 
to enhance coastal habitat and biotope mapping with drone 
aerial imagery analysis. – Sci. Rep. 11: 574.

Moreno-Amat, E., Mateo, R. G., Nieto-Lugilde, D., Morueta-
Holme, N., Svenning, J.-C. and García-Amorena, I. 2015. 
Impact of model complexity on cross-temporal transferability 
in Maxent species distribution models: an assessment using 
paleobotanical data. – Ecol. Model. 312: 308–317. 

Muha, T. P., Rodríguez-Rey, M., Rolla, M. and Tricarico, E. 2017. 
Using environmental DNA to improve species distribution 
models for freshwater invaders. – Front. Ecol. Evol. 5: 158.

Muhling, B. A., Brodie, S., Smith, J. A., Tommasi, D., Gaitan, C. 
F., Hazen, E. L., Jacox, M. G., Auth, T. D. and Brodeur, R. D. 
2020. Predictability of species distributions deteriorates under 
novel environmental conditions in the California current sys-
tem. – Front. Mar. Sci. 7: 1–22.

Nature Editorials. 2022. Time to recognize authorship of open 
data. – Nature 604: 8.

Nephin, J., Gregr, E. J., St. Germain, C., Fields, C. and Finney, J. 
L. 2020. Development of a species distribution modelling 
framework and its application to twelve species on Canada’s 
Pacific coast. – DFO Canadian Science Advisory Secretariat 
research document  2020/004, Fisheries and Oceans Canada.

O’Connor, M., Bruno, J., Gaines, S., Halpern, B., Lester, S., 
Kinlan, B. and Weiss, J. 2007. Temperature control of larval 
dispersal and the implications for marine ecology, evolution, 
and conservation. – Proc. Natl Acad. Sci. USA 104: 
1266–1271.

Olson, R. 2015. Houston, we have a narrative. – Univ. of Chicago 
Press.

Pearl, J., Glymour, M. and Jewell, N. P. 2016. Causal inference in 
statistics: a primer. – Wiley.

Pearson, R. G. and Dawson, T. P. 2003. Predicting the impacts of 
climate change on the distribution of species: are bioclimate 
envelope models useful? – Global Ecol. Biogeogr. 12: 361–371. 

Pecl G., T.  et  al. 2017. Biodiversity redistribution under climate 
change: impacts on ecosystems and human well-being. – Sci-
ence 355: eaai9214. 

Peña, M. A., Fine, I. and Callendar, W. 2019. Interannual variabil-
ity in primary production and shelf-offshore transport of nutri-
ents along the northeast Pacific Ocean margin. – Deep Sea Res. 
Part II: Top. Stud. Oceanogr. 169–170: 104637. 

Perez-Navarro, M. A., Broennimann, O., Esteve, M. A., Moya-
Perez, J. M., Carreño, M. F., Guisan, A. and Lloret, F. 2021. 
Temporal variability is key to modelling the climatic niche. – 
Divers. Distrib. 27: 473–484. 

Petitgas, P., Rijnsdorp, A. D., Dickey-Collas, M., Engelhard, G. H., 
Peck, M. A., Pinnegar, J. K., Drinkwater, K., Huret, M. and 
Nash, R. D. M. 2013. Impacts of climate change on the com-
plex life cycles of fish. – Fish. Oceanogr. 22: 121–139. 

Phillips, S. J., Anderson, R. P. and Schapire, R. E. 2006. Maximum 
entropy modeling of species geographic distributions. – Ecol. 
Model. 190: 231–259.

Piironen, J. and Vehtari, A. 2017. Comparison of Bayesian predic-
tive methods for model selection. – Stat. Comput. 27: 
711–735.

Pinsky, M. L. and Fogarty, M. 2012. Lagged social-ecological 
responses to climate and range shifts in fisheries. – Clim. 
Change 115: 883–891.

Pollock, L. J., Tingley, R., Morris, W. K., Golding, N., O'Hara, R. 
B., Parris, K. M., Vesk, P. A. and McCarthy, M. A. 2014. 
Understanding co-occurrence by modelling species simultane-
ously with a joint species distribution model (JSDM). – Meth-
ods Ecol. Evol. 5: 397–406. 

Pollock, L. J., O’Connor, L. M. J., Mokany, K., Rosauer, D. F., 
Talluto, M. V. and Thuiller, W. 2020. Protecting biodiversity 
(in all its complexity): new models and methods. – Trends Ecol. 
Evol. 35: 1119–1128. 

Pörtner, H. O. and Peck, M. A. 2010. Climate change effects on 
fishes and fisheries: towards a cause-and-effect understanding. 
– J. Fish Biol. 77: 1745–1779. 

Raimi, K. T., Stern, P. C. and Maki, A. 2017. The promise and 
limitations of using analogies to improve decision-relevant 
understanding of climate change. – PLoS One 12: e0171130.

Randin, C. F., Dirnböck, T., Dullinger, S., Zimmermann, N. E., 
Zappa, M. and Guisan, A. 2006. Are niche-based species dis-
tribution models transferable in space? – J. Biogeogr. 33: 
1689–1703. 

Randin, C. F., Engler, R., Normand, S., Zappa, M., Zimmermann, 
N. E., Pearman, P. B., Vittoz, P., Thuiller, W. and Guisan, A. 
2009. Climate change and plant distribution: local models pre-
dict high-elevation persistence. – Global Change Biol. 15: 
1557–1569. 

Record, S., Strecker, A., Tuanmu, M.-N., Beaudrot, L., Zarnetske, 
P., Belmaker, J. and Gerstner, B. 2018. Does scale matter? A 
systematic review of incorporating biological realism when pre-
dicting changes in species distributions. – PLoS One 13: 
e0194650.

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera‐
Arroita, G., Hauenstein, S., Lahoz‐Monfort, J. J., Schröder, B. 
and Thuiller, W. 2017. Cross‐validation strategies for data with 
temporal, spatial, hierarchical, or phylogenetic structure. – 
Ecography 40: 913–929.

Robinson, L. M., Elith, J., Hobday, A. J., Pearson, R. G., Kendall, 
B. E., Possingham, H. P. and Richardson, A. J. 2011. Pushing 
the limits in marine species distribution modelling: lessons from 
the land present challenges and opportunities. – Global Ecol. 
Biogeogr. 20: 789–802. 

Roux, M.-J., Duplisea, D. E., Hunter, K. L. and Rice, J. 2022. 
Consistent risk management in a changing world: risk equiva-
lence in fisheries and other human activities affecting marine 
resources and ecosystems. – Fron. Clim. 3: 1–14.

Rufener, M. C., Kristensen, K., Nielsen, J. R. and Bastardie, F. 
2021. Bridging the gap between commercial fisheries and sur-
vey data to model the spatiotemporal dynamics of marine spe-
cies. – Ecol. Appl. 31: e02453.

Sahri, A., Herwata Putra, M. I., Kusuma Mustika, P. L., Kreb, D. 
and Murk, A. J. 2021. Cetacean habitat modelling to inform 
conservation management, marine spatial planning, and as a 
basis for anthropogenic threat mitigation in Indonesia. – Ocean 
Coastal Manag. 205: 105555. 

Schloss, C. A., Nuñez, T. A. and Lawler, J. J. 2012. Dispersal will 
limit ability of mammals to track climate change in the Western 
Hemisphere. – Proc. Natl Acad. Sci. USA 109: 8606–8611.

Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., 
Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., 
Rahimi, M., Reichstein, M., Sorteberg, A., Vera, C. and Zhang, 
X. 2012. Changes in climate extremes and their impacts on the 



Page 17 of 18

natural physical environment. – In: Field, C. B., Barros, V., 
Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, 
M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. 
and Midgley, P. M. (eds), Managing the risks of extreme events 
and disasters to advance climate change adaptation. Cambridge 
Univ. Press, pp. 109–230.

Seo, C., Thorne, J., Hannah, L. and Thuiller, W. 2008. Scale effects 
in species distribution models: implications for conservation 
planning under climate change. – Biol. Lett. 5: 39–43. 

Shelton, A. O., Thorson, J. T., Ward, E. J. and Feist, B. E. 2014. 
Spatial semiparametric models improve estimates of species 
abundance and distribution. – Can. J. Fish. Aquat. Sci. 71: 
1655–1666.

Skroblin, A., Carboon, T., Bidu, G., Chapman, N., Miller, M., 
Taylor, K., Taylor, W., Game, E. T. and Wintle, B. A. 2021. 
Including indigenous knowledge in species distribution mod-
eling for increased ecological insights. – Conserv. Biol. 35: 
587–597. 

Sofaer, H. R., Jarnevich, C. S. and Flather, C. H. 2018. Misleading 
prioritizations from modelling range shifts under climate 
change. – Global Ecol. Biogeogr. 27: 658–666. 

Sofaer, H. R., Jarnevich, C. S., Pearse, I. S., Smyth, R. L., Auer, S., 
Cook, G. L., Edwards Jr, T. C., Guala, G. F., Howard, T. G. 
and Morisette, J. T. 2019. Development and delivery of species 
distribution models to inform decision-making. – BioScience 
69: 544–557.

Stammer, D., Engels, A., Marotzke, J., Gresse, E., Hedemann, C. 
and Petzold, J. (eds) 2021. – Hamburg climate futures outlook 
2021. Assessing the plausibility of deep decarbonization by 
2050. – Cluster of Excellence Climate, Climatic Change, and 
Society (CLICCS). 

Stoklosa, J., Daly, C., Foster, S. D., Ashcroft, M. B. and Warton, 
D. I. 2015. A climate of uncertainty: accounting for error in 
climate variables for species distribution models. – Methods 
Ecol. Evol. 6: 412–423.

Sunday, J., Bates, A. and Dulvy, N. 2012. Thermal tolerance and 
the global redistribution of animals. – Nat. Clim. Change 2: 
686–690.

Thompson, P. L. and Fronhofer, E. A. 2019. The conflict between 
adaptation and dispersal for maintaining biodiversity in chang-
ing environments. – Proc. Natl Acad. Sci. USA 116: 
21061–21067.

Thompson, P. L. and Gonzalez, A. 2017. Dispersal governs the 
reorganization of ecological networks under environmental 
change. – Nat. Ecol. Evol. 1: 1–8.

Thompson, P. L., Guzman, L. M., De Meester, L., Horváth, Z., 
Ptacnik, R., Vanschoenwinkel, B., Viana, D. S. and Chase, J. 
M. 2020. A process-based metacommunity framework linking 
local and regional scale community ecology. – Ecol. Lett. 23: 
1314–1329.

Thompson, P. L., Anderson, S. C., Nephin, J., Haggarty, D. R., 
Peña, M. A., English, P. A., Gale, K. S. P. and Rubidge, E. 
2022. Disentangling the impacts of environmental change 
and commercial fishing on demersal fish biodiversity in a 
northeast Pacific ecosystem. – Mar. Ecol. Prog. Ser. 689: 
137–154.

Thompson, P. L., Nephin, J., Davies, S. C., Park, A. E., Lyons, D. 
A., Rooper, C. N., Peña, M. A., Christian, J. R., Hunter, K. L., 
Rubidge, E. and Holdsworth, A. M. 2023. Groundfish biodi-
versity change in northeastern Pacific waters under projected 
warming and deoxygenation. – Phil. Trans. Roy. Soc. B 378: 
20220191.

Thorson, J. T. and Minto, C. 2014. Mixed effects: a unifying frame-
work for statistical modelling in fisheries biology. – ICES J. 
Mar. Sci. 72: 1245–1256.

Thorson, J. T., Shelton, A. O., Ward, E. J. and Skaug, H. J. 2015. 
Geostatistical delta-generalized linear mixed models improve 
precision for estimated abundance indices for West Coast 
groundfishes. – ICES J. Mar. Sci. 72: 1297–1310.

Thorson, J. T., Barnes, C. L., Friedman, S. T., Morano, J. L. and 
Siple, M. C. 2023. Spatially varying coefficients can improve 
parsimony and descriptive power for species distribution mod-
els. – Ecography 2023: e06510. 

Thuiller, W., Brotons, L., Araújo, M. and Lavorel, S. 2004. Effects 
of restricting range of data to project current and future species 
distributions. – Ecography 27: 165–172.

Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. and Zim-
mermann, N. E. 2019. Uncertainty in ensembles of global bio-
diversity scenarios. – Nat. Commun. 10: 1–9.

Tittensor, D. P. et al. 2018. A protocol for the intercomparison of 
marine fishery and ecosystem models: fish-MIP v1.0. – Geosci. 
Model Dev. 11: 1421–1442.

Tittensor, D.  et  al. 2021. Next-generation ensemble projections 
reveal higher climate risks for marine ecosystems. – Nat. Clim. 
Change 11: 973–981.

Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F. 
and De Clerck, O. 2012. Bio-ORACLE: a global environmen-
tal dataset for marine species distribution modelling. – Global 
Ecol. Biogeogr. 21: 272–281. 

Urban, M. C. 2019. Projecting biological impacts from climate 
change like a climate scientist. – WIREs Clim. Change 10: e585. 

Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe’er, G., 
Singer, A., Bridle, J. R., Crozier, L. G., De Meester, L., Godsoe, 
W., Gonzalez, A., Hellmann, J. J., Holt, R. D., Huth, A., Johst, 
K., Krug, C. B., Leadley, P. W., Palmer, S. C. F., Pantel, J. H., 
Schmitz, A., Zollner, P. A. and Travis, J. M. J. 2016. Improving 
the forecast for biodiversity under climate change. – Science 
353: aad8466.

Urli, M., Brown, C. D., Narvaez Perez, R., Chagnon, P. L. and 
Vellend, M. 2016. Increased seedling establishment via enemy 
release at the upper elevational range limit of sugar maple. – 
Ecology 97: 3058–3069.

US National Research Council. 2008. Public participation in envi-
ronmental assessment and decision making. – National Acad-
emy Press.

Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Bal-
aguer, L., Benito-Garzón, M., Cornwell, W., Gianoli, E., van 
Kleunen, M., Naya, D. E., Nicotra, A. B., Poorter, H. and 
Zavala, M. A. 2014. The effects of phenotypic plasticity and 
local adaptation on forecasts of species range shifts under cli-
mate change. – Ecol. Lett. 17: 1351–1364. 

Vellend, M. 2016. The theory of ecological communities (MPB-
57). – Princeton Univ. Press.

Veloz, S. D., Williams, J. W., Blois, J. L., He, F., Otto-Bliesner, B. 
and Liu, Z. 2012. No-analog climates and shifting realized 
niches during the late quaternary: implications for 21st-century 
predictions by species distribution models. – Global Change 
Biol. 18: 1698–1713. 

Villero, D., Pla, M., Camps, D., Ruiz-Olmo, J. and Brotons, L. 
2017. Integrating species distribution modelling into decision-
making to inform conservation actions. – Biodivers. Conserv. 
26: 251–271.

Virkkala, R., Marmion, M., Heikkinen, R., Thuiller, W. and Luoto, 
M. 2010. Predicting range shifts of northern bird species: influ-



Page 18 of 18

ence of modelling technique and topography. – Acta Oecol. 36: 
269–281.

Wallingford, P. D. and Sorte, C. J. B. 2022. Dynamic species inter-
actions associated with the range-shifting marine gastropod 
Mexacanthina lugubris. – Oecologia 198: 749–761.

Warton, D. I., Blanchet, F. G., O’Hara, R. B., Ovaskainen, O., 
Taskinen, S., Walker, S. C. and Hui, F. K. C. 2015. So many 
variables: joint modeling in community ecology. – Trends Ecol. 
Evol. 30: 766–779. 

Watson, J., Joy, R., Tollit, D., Thornton, S. and Auger-Méthé, M. 
2021. Estimating animal utilization distributions from multiple 
data types: a joint spatio-temporal point process framework. – 
Ann. Appl. Stat. 15: 10.1214/21-AOAS1472. 

Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., 
Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Mori-
sette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., 
Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, 
L., Vose, J., Weltzin, J. F. and Whyte, K. P. 2020. Climate 
change effects on biodiversity, ecosystems, ecosystem services, 
and natural resource management in the United States. – Sci. 
Total Environ. 733: 137782. 

Wenger, S. J. and Olden, J. D. 2012. Assessing transferability of 
ecological models: an underappreciated aspect of statistical 
validation. – Methods Ecol. Evol. 3: 260–267.

Whittaker, R. J., Araújo, M. B., Jepson, P., Ladle, R. J., Watson, J. 
E. M. and Willis, K. J. 2005. Conservation biogeography: 
assessment and prospect. – Divers. Distrib. 11: 3–23. 

Wiens, J. J. 2016. Climate-related local extinctions are already 
widespread among plant and animal species. – PLoS Biol. 14: 
e2001104.

Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. and 
Snyder, M. A. 2009. Niches, models, and climate change: 
assessing the assumptions and uncertainties. – Proc. Natl Acad. 
Sci. USA 106: 19729.

Willis, K. and Bhagwat, S. 2009. Biodiversity and climate change. 
– Science 326: 806–807.

Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. and Fu, C. 2021. Bias-cor-
rected CMIP6 global dataset for dynamical downscaling of the 
historical and future climate (1979–2100). – Sci. Data 8: 293.

Yates, L. A., Aandahl, Z., Richards, S. A. and Brook, B. W. 2023. 
– Cross validation for model selection: a primer with examples 
from ecology. Ecol. Monogr. 93: e1557.

Young, M. and Carr, M. H. 2015. Application of species distribu-
tion models to explain and predict the distribution, abundance 
and assemblage structure of nearshore temperate reef fishes. – 
Divers. Distrib. 21: 1428–1440. 

Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. and 
Ranjbar, H. 2021. Using climatic variables alone overestimate 
climate change impacts on predicting distribution of an endemic 
species. – PLoS One 16: e0256918.

Zarnetske, P. L., Skelly, D. K. and Urban, M. C. 2012. Biotic 
multipliers of climate change. – Science 336: 1516–1518.

Zurell, D.  et  al. 2020. A standard protocol for reporting species 
distribution models. – Ecography 43: 1261–1277. 


	Introduction
	Guidelines for using SDMs to project marine species
	1. Frame the research question
	2. Build a collaborative community for SDMs in future climates
	3. Ensure the scope of study is relevant, both in space and in time
	4. Identify appropriate species’ data
	5. Determine relevant climatic and non-climatic environmental variables
	6. Select the SDM model
	7. Identify climate model uncertainty
	8. Identify SDM uncertainty
	9. Identify eco-evolutionary uncertainty
	10. Communicate the results and uncertainties


	Conclusion
	Funding – Funding was provided by Fisheries and Oceans Canada Aquatic Climate Change and Adaptation Services Program.
	Author contributions
	Transparent peer review
	Data availability statement

	References

